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Abstract
Brain functional network (FN) has emerged as a potential tool for identifying mental and neurological diseases. Traditional FN estimation 
methods such as Pearson’s correlation (PC) and sparse representation (SR), despite their popularity, can only model low-order relationships 
between brain regions (i.e., nodes of FN), thus failing to capture more complex interaction in the brain. Recently, researchers proposed 
to estimate high-order FN (HoFN) and successfully used them in the early diagnosis of neurological diseases. In practice, however, such 
HoFN is constructed by directly considering the columns (or rows) of the adjacency matrix of low-order FN (LoFN) as node feature vectors 
that may contain some redundant or noisy information. In addition, it is not really reflected whether the original low-order relationship is 
maintained during the construction of the HoFN. To address these problems, we propose correlation-preserving embedding (COPE) to 
re-code the LoFN prior to constructing HoFN. Specifically, we first use SR to construct traditional LoFN. Then, we embed the LoFN via 
COPE to generate the new node representation for removing the potentially redundant/noisy information in original node feature vectors 
and simultaneously maintaining the low-order relationship between brain regions. Finally, the expected HoFN is estimated by SR based 
on the new node representation. To verify the effectiveness of the proposed scheme, we conduct experiments on 137 subjects from the 
public Alzheimer’s Disease Neuroimaging Initiative (ADNI) database to identify subjects with mild cognitive impairment (MCI) from 
normal controls. Experimental results show that the proposed scheme can achieve better performance than the baseline method.

Keywords High-order correlation · Brain functional network · Sparse representation · Correlation-preserving embedding · 
Mild cognitive impairment

1 Introduction

Resting state functional magnetic resonance imaging (rs-
fMRI), generally by measuring the blood oxygen level 
dependent (BOLD) signals of the brain, can effectively cap-
ture the spontaneous cerebral activity that occurs when the 
subject remains awake and does not receive any external 

stimulus [1]. Based on rs-fMRI, one can estimate brain func-
tional networks (FNs) to understand the cerebral working 
mechanism and provide effective biomarkers for the diag-
nosis of neurological diseases [2], such as autism spectrum 
disorder (ASD) [3, 4], major depressive disorder [5, 6], Alz-
heimer’s disease (AD) [7], and its early stage, namely mild 
cognitive impairment (MCI) [8].

In general, FN is modeled as a graph, where the nodes are 
defined as the brain regions of interest (ROI) and the edge 
(generally with weight) denotes the statistical dependence 
between BOLD signals extracted from the ROI [9, 10]. To 
date, researchers have proposed many FN estimation meth-
ods [11], including Pearson’s correlation (PC), partial cor-
relation, regularized partial correlation, sparse low-rank rep-
resentation [12], and dynamic causal model [13], to name 
a few. In this paper, we mainly focus on correlation-based 
methods because they are simple and effective [14].

Among correlation-based methods, PC is the most widely 
used in practice, but it can only capture the full correlation 
and obtain dense FN that may contain false connections 
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caused by confounding effects from other brain regions. To 
address this problem, a threshold is generally used for sparse 
processing of FN [15, 16]. As an alternative to PC, partial 
correlation builds FN by regressing out potential effects 
from other brain regions. However, the partial correlation 
method generally requires the calculation of the inverse 
covariance matrix [17], which may lead to the ill-posed 
problem. Therefore, an l1-norm regularization is generally 
included in the model to obtain more reliable partial correla-
tion, resulting in the sparse representation (SR)–based FN 
estimation method [18].

Despite their successful applications, the above methods 
can only model the low-order relationships between brain 
regions (i.e., nodes of FN), thus failing to capture more com-
plex interaction in the brain. Recently, researchers proposed 
some high-order FN (HoFN) estimation methods [19–23] 
towards modelling more complex relationships and used 
them in the early diagnosis of neurological diseases. Zhao 
et al. investigated the multi-level HoFN based on PC to diag-
nose ASD [24]; Chen et al. developed the HoFN estima-
tion method based on sliding window and applied it to the 
classification of MCI [25]; Zhang et al. studied the method 
of constructing HoFN based on two consecutive correla-
tion operations for the diagnosis of MCI abnormalities [26]; 
and Jia et al. constructed the HoFN using two consecutive 
canonical models for predicting both consciousness level 
and recovery outcome in acquired brain injury [27]. Due 
to the fact that these HoFN methods above are all based on 
two consecutive operations to calculate the high-order cor-
relation, we simply refer to them as correlation’s correlation 
(CC). Note that we can naturally generalize the two consecu-
tive correlation operations to multiple correlations, but this 
goes beyond our main focus in the current study. Refer to 
[28] for a detailed investigation about this problem.

The experimental results show that the CC-based HoFN 
estimation methods are effective for the task of brain dis-
ease recognition and classification [26, 27]. However, such 
HoFN is constructed by directly considering the rows/col-
umns of the LoFN adjacency matrix as node feature vectors 
that may contain some redundant or noisy information. We 
will shortly explain this point further in Fig. 1. Addition-
ally, it does not really reflect whether the original low-order 
relationship is maintained during the construction of the 
HoFN. To address these problems, we propose correlation-
preserving embedding (COPE) to re-code the LoFN prior to 
HoFN estimation. Specifically, we first use SR to construct 
traditional LoFN. Then, we embed the LoFN via COPE 
to generate the new node representation for removing the 
potentially redundant/noisy information in original node fea-
tures and simultaneously maintaining the low-order relation-
ship. Finally, the expected HoFN is estimated by SR based 
on the new node representation. To verify the effectiveness 
of our proposed scheme, we use the estimated HoFN for 

MCI recognition on the ADNI dataset. The experimental 
results illustrate that the proposed method can achieve better 
performance than the baseline method.

The rest of this paper is organized as follows. In Sec-
tion 2, we introduce the preparation of data, the related 
methods for estimating FNs, and our proposed method. In 
Section 3, we report the experimental setting and evaluate 
the proposed method by applying it to recognition. In Sec-
tion 4, we investigate the effect of FN modeling parameters 
on the experimental results, the selection of discriminative 
features, the advantages of the proposed method, and discuss 
the statistical significance. We finally conclude the paper in 
Section 5.

2  Methods and materials

In this section, we first describe data acquisition and pre-
processing. Then, the correlation-based FN construction 
methods and our proposed scheme are depicted. Finally, we 
introduce the relationship between CC and our method.

2.1  Data acquisition and preprocessing

In this paper, we use the publicly available ADNI database1 
for evaluating the involved methods. As in the recent study 
[29, 30], 137 subjects, including 68 MCIs and 69 NCs, are 
adopted in our experiment. The selected fMRI images were 
scanned by 3.0 T Philips scanner with the following param-
eters: slice thickness is 3.3 mm, TE is 30 ms, and TR is 
2.2 − 3.1 s. The scanning time is 7 min, leading to 140 vol-
umes for each subject. In Table 1, we list the main demo-
graphic information of the subjects included in this study.

The original rs-fMRI data is preprocessed via SPM8 
toolbox2 as follows. To remain the signal stabilization, we 
removed the first three volumes of each subject from the 
fMRI time course with 140 volumes. For the remaining 137 
volumes, we conduct head motion and slice timing correc-
tion. Furthermore, nuisance regression is used to reduce the 
effect of the ventricle and white matter signals based on Fris-
ton 24 parameters. After that, the corrected rs-fMRI images 
are registered to the standard Montreal neurological institute 
(MNI) space and spatially smoothed by a Gaussian kernel 
with the full-width-half maximum of 4 mm. Then, band-pass 
filter (0.015 − 0.150 Hz) is used to remove the extremely 
low- and high-frequency artifacts. Finally, according to the 
automated anatomical labeling (AAL) template [31], the 
brain was partitioned into 116 ROIs, and the mean time 
series of each ROI were put into a data matrix X ∈ R137×116.

1 http:// adni. loni. usc. edu/
2 http:// www. fil. ion. ucl. ac. uk/ spm/
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2.2  Related methods

As mentioned earlier, researchers have developed many 
methods to estimate FNs. In this section, we first review two 
correlation-based LoFN estimation approaches, PC and SR, 
and then briefly introduce the CC-based HoFN construction 
method. These methods are all closely related to our study.

2.2.1  Pearson’s correlation

It is well known that PC is the simplest and most popular 
method for estimating FNs. Suppose that the brain has 
been parcellated into n ROIs based on a certain atlas. 
Denote xi ∈ Rm(i = 1,⋯ , n) as the mean time series 
extracted from the i th ROI, where m is the number of 
the time points in each series. Then, the edge weight wij 
between the i th and j th ROIs in the PC-based FN can be 
calculated as follows:

where xi ∈ Rm is the mean vector corresponding to 
xi . Without loss of generality, we normalize xi by 
x
i
= (x

i
− x

i
)∕

√

(x
i
− x

i
)
T
(x

i
− x

i
) , and thus, the PC can be simply 

expressed as wij = xi
Txj , which corresponds to the optimal 

solution of the following model:

According to a previous work [32], Eq. (2) can be fur-
ther transformed into the following matrix form:

where X = [x1, x2,⋯ , xn] ∈ Rm×n is the BOLD fMRI data 
matrix, W = (wij) ∈ Rn×n is the edge weight matrix of the 
estimated FN, and || ∙ ||F denotes the Frobenius norm of a 
matrix.

(1)wij =
(xi − xi)

T
(xj − xj)

√

(xi − xi)
T
(xi − xi)

√

(xj − xj)
T
(xj − xj)

(2)min
wi,j

�n

i,j=1
‖xi − wijxj‖

2

(3)min
W

‖W − XTX‖
2

F

In general, the constructed FN based on PC is a dense 
graph (i.e., all vertices are fully-connected by edges), 
which may contain noisy or uninformative connections. 
In practice, a threshold is generally used to sparse the PC-
based FN by filtering out the weak connections.

2.2.2  Sparse representation

Although PC is empirically effective in building FN, it 
can only measure the full correlation. By contrast, partial 
correlation aims to estimate more reliable connections 
between two ROIs by regressing out the confounding effect 
from other ROIs. The general approach to calculate partial 
correlation is based on the estimation of inverse covari-
ance matrix. However, this approach may be ill-posed 
due to the singularity of the sample covariance matrix. To 
address this problem, an l1 regularizer is generally intro-
duced into the traditional model, which leads to SR-based 
FN estimation as follows:

Equivalently, it can be further simplified to the follow-
ing matrix form:

(4)min
w��

�n

i=1
(‖xi −

�

j≠i
wijxj‖

2

+ �1

�

j≠i

�

�

�

wij
�

�

�

)

(5)
min
W

‖X − XW‖

2

F
+ �1‖W‖1

s.t.wii = 0,∀i = 1,⋯ n

Fig. 1  The pipeline of building 
HoFN. Branch (a) is the CC-
based HoFN estimation; Branch 
(b) is the proposed method

Table 1  Demographic and clinical information of subjects in the 
ADNI datasets. Values are reported as mean ± standard deviation. 
M/F, male/female; MMSE, mini-mental examination

Dataset Class Gender (M/F) Age (years) MMSE

ADNI MCI 39∕29 76.50 ± 13.50 26.77 ± 1.23

NC 17∕52 71.50 ± 14.50 28.85 ± 1.15
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where  || ∙ ||F and || ∙ ||1 are the F-norm and l1-norm of a 
matrix, respectively. The constraint wii = 0 is used here to 
avoid the trivial solution by removing xi from X . �1 is a 
regularized parameter that can control the sparsity of the 
estimated FN and benefit to achieve a stable solution.

2.2.3  HoFN estimation based on correlation’s correlation

The two basic FN construction methods described pre-
viously can only capture the low-order (second-order) 
statistics, but ignore more complex interactions between 
ROIs [26, 27]. In this section, we review a CC-based FN 
construction method that can model higher-order statis-
tics between ROIs and also closely relates to the proposed 
method. Due to the fact that SR is used to correlation cal-
culation in the high-order method, we name it  HoFNSR, 
and take it as the baseline in our study.

The  HoFNSR method involve two main steps. First, 
the traditional LoFN W = (wij)n×n is calculated by 
SR, as shown in Eq. (5). As a result, for each ROI, we 
have a node vector (i.e., the column of the FN adja-
cency matrix) to measure the relationship between this 
ROI and all other ROIs. In particular, we suppose that 
wi = [wi1,⋯ ,wij,⋯ ,win] denotes the feature vector of the 
node i (corresponding to the i th ROI). Then, based on this 
LoFN, SR is again carried out on the node feature vector 
to calculate the HoFN as follows:

where hij is the relationship between the feature vector of i 
th ROI and j th ROI, and �2 is a regularized parameter for 
controlling the sparsity of the estimated HoFN.

Equation (6) can also be equivalently transformed into 
the following matrix form:

where H = (hij) ∈ Rn×n is the estimated HoFN that is 
expected to capture more complex interaction between brain 
regions at a higher-order level.

2.3  Proposed method

As mentioned above, the HoFN is constructed by directly 
representing the adjacency matrix of LoFN as node features 
that may contain some redundant or noisy information. Fur-
thermore, the noisy connections inherited from LoFN may 
in turn lead to unreliable HoFN. More importantly, it is not 
really reflected whether the original low-order relationship is 
maintained during the construction of the HoFN. Therefore, 

(6)min
h��

�n

i=1
(‖wi −

�

j≠i
hijwj‖

2

+ �2

�

j≠i

�

�

�

hij
�

�

�

)

(7)
min
H

‖W −WH‖

2

F
+ �2‖H‖1

s.t.hii = 0,∀i = 1,⋯ n

in this section, we develop a new scheme COPE to re-code the 
LoFN prior to construct HoFN. The proposed method aims at 
not only removing the potentially redundant/noisy information 
in original node features, but also maintaining the low-order 
relationship in the embedding space.

Specifically, we first use SR to construct traditional LoFN 
whose adjacency matrix is denoted by W = (wij)n×n . Then, we 
embed the LoFN via COPE to generate the new node represen-
tation Y = [y1, y2,⋯ , yn] ∈ Rd×n by minimizing the following 
objective function:

where yi is the new node representation of node i in the 
low-dimensional embedded space, and wij is the edge weight 
of LoFN estimated in the previous step. In fact, the weight 
wij in LoFN is the low-order information (or rather second-
order statistic) that encodes the relationship between the 
high-dimensional BOLD signals. Then, we use COPE to 
find a low-dimensional embedding space where the low-
order information wij can be well preserved. This can be 
done by optimizing Eq.  (8) and the new representation 
Y = [y1, y2,⋯ , yn] ∈ Rd×n , where d controls the dimension 
of the embedding space. In other words, COPE aims to keep 
the low-order information contained in the high-dimensional 
space as much as possible in the low-dimensional vector 
space after embedding.

In mathematics, Eq. (8) can be transformed into the follow-
ing matrix form:

For avoiding trivial solution, we further constrain 
∑n

i=1
tr(yiyi

T ) = n , that is, tr(YYT ) = n . As a result, we have 
the final model of COPE as follows:

where M = (I −W)(I −W)T . Next, the Lagrange multiplier 
method is used to transform the above problem into the 
following:

By taking the derivative of the above equation, we have 
the following:

This turns COPE into a generalized eigenproblem, and 
the eigenvectors corresponding to the smallest d non-zero 
eigenvalues of the matrix M is the optimal solution that 

(8)Φ(Y) =
∑n

i=1
⇑ yi −
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Φ(Y) =
∑n

i=1
‖YI

i
− YW
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‖Y(I
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−W
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−W
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(10)min
Y
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(11)L(Y) = tr(YMYT ) + tr(�
(

YYT − n
)

)

(12)MYT = �YT
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will serve as the new node representation for estimating 
HoFN as follows:

Equation (13) can be further transformed mathemati-
cally into the following matrix form:

where �2 is a regularized parameter for controlling the bal-
ance of two terms in the objective function. In order to facili-
tate the subsequent description, the HoFN constructed based 
on the COPE method is simply named as  HoFNCOPE.

The specific pipeline of constructing HoFN is shown 
in Fig. 1. Branch (a) is the CC-based HoFN estimation: 
(1) LoFN is first calculated by SR, and the columns of 
adjacency matrix are taken as node feature vectors (e.g., 
wi ); (2) then, SR is carried out on the node feature vec-
tor to calculate HoFN, where hi represents the high-order 
correlation between i th ROI and other ROIs. Branch (b) 
is the proposed method: (1) With the same step as CC-
based method to construct LoFN, (2) LoFN is re-coded 
via COPE to obtain embedded matrix whose column wi 
is taken as new node representation, and (3) HoFN is 
estimated by SR based on the new node representation. 
We note that the traditional CC-based methods directly 
represent the adjacency matrix of LoFN as node features 
to construct HoFN. In contrast, the proposed method re-
code the LoFN via COPE before constructing HoFN. By 
converting the node information of the LoFN into a vec-
tor with smaller dimension, more essential features can 
be extracted for HoFN construction. Without the COPE 
operation on the LoFN, the  HoFNCOPE will reduce to the 
traditional method. In other words, we can consider tradi-
tional CC-based methods as a special case of our proposed 
method.

3  Experiments and results

3.1  Brain functional network estimation

After obtaining the pre-processed fMRI data, we estimate 
FNs based on different methods. Specifically, four methods, 
including PC, SR,  HoFNSR, and  HoFNCOPE, are involved 
in our experiment. In general, each FN estimation method 
contains one or more hyper-parameters. For the regularized 
parameter (i.e., �1 in SR, �2 in both  HoFNSR and  HoFNCOPE), 
we search in the candidate range of [2−10, 2−9,⋯ , 2−1, 20] to 
select the optimal parametric value. Note that, for PC-based 
FN estimation method, no any free parameter is involved in 

(13)���
h��

�n

i=1
(‖yi −

�

j≠i
hijyj‖

2

+ �2

�

j≠i

�

�

�

hij
�

�

�

)

(14)
min
H

‖Y − YH‖

2

F
+ �2‖H‖1

s.t.hii = 0,∀i = 1,⋯ n

the model itself. However, in order to improve its flexibil-
ity and make a fair comparison, we introduce a threshold 
parameter to sparse the initial estimated FNs by removing 
some weak connections. To keep in line with the number of 
parameters subset in other methods, we also use 11 candi-
date thresholds in the range of [0, 10%,⋯ , 90%, 99%] , cor-
responding to different degrees of sparsity, where the para-
metric values mean the percentage of weak connections that 
are discarded. In addition, for  HoFNCOPE, the embedding 
dimension d is selected from [100, 90,⋯ , 20, 10] , and the 
influence of the dimension on classification results is dis-
cussed in the following sections.

3.2  Feature selection and classification

With the estimated FNs, we subsequently identify the sub-
jects with MCI from NCs using the popular support vector 
machine [33] that has been verified to work well in the 
recent survey [34]. In our experiment, the edge weights 
of low-order or high-order networks are used as features 
for the identification task. Since the estimated FN matrix 
is symmetric, we only consider its upper triangular ele-
ments as the input features. In particular, each FN has 
116 nodes and thus can produce 116 × (116 − 1)∕2 = 6670 
features (corresponding to 6670 functional connections 
between 116 ROIs). Compared to the sample size (i.e., the 
number of subjects), the feature dimension is very high, 
which often leads to the so-called curse of dimensional-
ity and in turn affects the final classification accuracy. To 
address this problem, researchers have proposed numbers 
of approaches for feature selection [35]. In this paper, we 
only adopt the simplest feature selection method t-test with 
p = 0.05, since our main focus is to evaluate the FN estima-
tion strategies.

The detailed pipeline for feature selection and classifica-
tion is shown in Fig. 2. Due to the limitation of sample size, 
we use the leave-one-out cross validation (LOOCV) to esti-
mate the classification performance of the involved methods. 
Specifically, for the 137 subjects in the dataset, 136 of them 
are used for training, while the remaining one is used for 
testing. The final performance can thus be achieved by aver-
aging results of all the runs. The parameters involved in the 
FN estimation models may affect the structure of the brain 
network and the final classification result. In order to obtain 
the optimal parameters of each method, an inner LOOCV 
is further conducted on the training data by the grid-search 
strategy as shown in Fig. 2.

2817Medical & Biological Engineering & Computing (2022) 60:2813–2823



1 3

3.3  Results

3.3.1  Brain network visualization

For an intuitive comparison among differently estimated 
FNs, we take one subject from ADNI dataset as an example 
to visualize the adjacency matrices of the FNs estimated 
by PC, SR,  HoFNSR, and  HoFNCOPE in Fig. 3. It can be 
observed that the PC based FN is significantly different from 
those estimated by SR-based methods, since they use differ-
ent data fitting terms to capture full correlation and partial 
correlation between ROIs, respectively. In contrast, all the 
SR-based methods lead to similar topological structures, 
and the resulted FNs are sparse due to the introduction of 
l1-norm regularization. In addition, we select 14 subjects 
and use the signed modularity maximization algorithm to 
calculate the modularity scores of HoFNs constructed by 
two methods under optimal parameter combinations [36, 
37]. As shown in Fig. 4, modularity of FN estimated by 
 HoFNCOPE is generally higher than that by  HoFNSR, which 
indicates that  HoFNCOPE tends to achieve a cleaner FN with 
clear modularity structure.

3.3.2  Classification performance

In this paper, we adopt five quantitative metrics, including 
accuracy (ACC ), sensitivity (SEN), specificity (SPE), posi-
tive predictive value (PPV), and negative predictive value 
(NPV) to evaluate the classification performance of differ-
ent methods. Their mathematical definitions are given as 
follows:

(15)ACC =
TP + TN

TP + TN + FP + FN

(16)SEN =
TP

TP + FN

(17)SPE =
TN

TN + FP

where TP, TN, FP, and FN indicate the true positive, true 
negative, false positive and false negative, respectively. Of 
note, in this work, we treat the subjects with MCI as the 
positive class while the NCs as the negative class.

In Table 2, we report the classification results for the 
MCI identification task based on four different FN estima-
tion methods. Especially for the  HoFNCOPE, the embedding 
dimension d is fixed with 80. In the next section, we will 
discuss in detail the influence of different parametric values 
on the final classification performance. As can be seen from 
Table 2, the proposed method significantly outperforms the 
three baseline methods. More interestingly, we note that the 
high-order method does not necessarily result in a better 
performance than the low-order counterpart. This finding 
is consistent with a recent study [28]. However, with the 
COPE operation before the high-order network construction, 
the  HoFNCOPE tends to extract more essential (at least more 
discriminative) features of the LoFN, thus achieving the best 
classification performance.

4  Discussion

In this section, we investigate the effect of network model-
ling parameters on the classification results and show the 
most discriminative features selected by our method for 
exploring their relationship with brain disorders. In addition, 
we further discuss the advantages of the proposed method 
and the statistical significance of FN estimated by the four 
methods.

4.1  Sensitivity to network modelling parameters

In general, the parameters involved in the FN estima-
tion methods have an important influence on the ultimate 

(18)PPV =
TP

TP + FP

(19)NPV =
TN

TN + FN

Fig. 2  The MCI identification 
pipeline based on the esti-
mated FNs in this study, which 
contains three major modules: 
(1) data preprocessing, (2) FN 
construction, and (3) feature 
selection and classification

2818 Medical & Biological Engineering & Computing (2022) 60:2813–2823
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classification performance [38, 39]. In this study, the param-
eters can be divided into two groups: the embedding dimen-
sion d and the regularization parameters in the network esti-
mation models. To investigate the sensitivity of the involved 
methods to different parametric values, we repeat MCI clas-
sification experiments based on different dimensions d and 
regularization parameter combinations and report the results 
in Figs. 5 and 6, respectively.

As shown in Fig. 5, the classification performance based 
on  HoFNCOPE fluctuates with the change of parameter d, 
where the horizontal line denotes the performance of the 
baseline method  HoFNSR that is independent of the embed-
ding dimension. In particular, a big dimension tends to result 
in better performance, and with the decrease of the dimen-
sion, the classification performance of  HoFNCOPE declines 
gradually. Especially, when the dimension is reduced to 40, 
the classification performance of  HoFNCOPE becomes worse 
than the baseline. This illustrates an over-reduction of the 
dimension may cause the loss of useful information for dis-
crimination. Therefore, the selection of embedding dimen-
sion is crucial to the final classification performance, and we 
empirically set the dimension d to 80.

In the case of fixed embedding dimension d, the method 
of constructing HoFN involves two parameters to control the 
sparsity of the network. Specifically,  HoFNSR and  HoFNCOPE 
both contain two regularization parameters: one ( �1 ) is used 

to control the sparsity of low-order networks, and the other 
( �2 ) is used to control the sparsity of high-order networks. 
In Fig. 6, we show the classification accuracy corresponding 
to different parametric combinations in the proposed method 
when d is 80. It can be observed that �1 = 20 and �2 = 2−10 
are the optimal combinations of regularized parameters for 
 HoFNSR, and the accuracy is 77.37%. In contrast,  HoFNCOPE 
reaches the highest classification accuracy of 90.51% at 
�1 = 2−1 and �2 = 2−3 . Compared with the performance 
of the two HoFN methods, we found that the classification 
result of  HoFNCOPE is superior to the traditional  HoFNSR on 
the whole. In addition, under different parameter combina-
tions, the classification performance of HoFN constructed 
by  HoFNCOPE model is more stable than that of  HoFNSR.

The above two groups of experiments discuss the influ-
ence of the parameters involved in the HoFN construction 
methods (i.e.,  HoFNSR and  HoFNCOPE) on the final clas-
sification performance. To further study the classification 
performance of  HoFNCOPE, we compare it with LOFN 
constructed by PC under different thresholds. As shown in 
Fig. 7, PC-based classification accuracy fluctuates greatly 
with the change of thresholding values, where the horizon-
tal reference line represents the performance of  HoFNCOPE 
when the fixed embedding dimension d = 80. By observ-
ing Fig. 7, we find that the classification accuracy of LoFN, 
under different thresholds, is lower than  HoFNCOPE. This 

Fig. 3  For one subject, the adjacency matrices of FNs estimated by 
four different methods, i.e., PC, SR,  HoFNSR, and  HoFNCOPE. Note 
that the elements in the adjacency matrices have been normalized into 

the interval of [− 1,1] for the convenience of comparison between the 
visualized results

Fig. 4  Modularity scores of HoFN constructed by different methods. 
Note that the horizontal axis indicates the label of the participant

Table 2  The classification results corresponding to four different FN 
estimation methods under five performance indices

Bold values indicates the best results

Method ACC SEN SPE PPV NPV

PC 0.7956 0.7647 0.8261 0.8125 0.7808
SR 0.8029 0.7941 0.8116 0.8060 0.8000
HoFNSR 0.6788 0.6912 0.6667 0.6714 0.6866
HoFNCOPE 0.8759 0.8824 0.8696 0.8696 0.8824
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also indicates that HoFN contains more discriminative infor-
mation to help the classification task.

4.2  Discriminative features

In addition to the classification accuracy itself, an interesting 
aspect is which features contribute the most to disease iden-
tification. As previously mentioned in Sect. 3.2, this paper 
uses the edge weights of estimated FN as features for clas-
sification. Here, after constructing FN by  HoFNCOPE (d = 80) 
model, we apply t-test with p-value of 0.005 to select dis-
criminative features. As a result, we select 61 discriminative 
connections and visualize them in Fig. 8.

Of note, each arc in Fig. 8 shows the selected feature 
between two ROIs, where the color is randomly allocated 
only for a better visualization. The thickness of each arc 
indicates its discriminative power that is inversely propor-
tional to the corresponding p-value. From Fig. 8, we can 
find that the brain regions associated with top discriminative 

features include hippocampus, para-hippocampus, and pre-
cuneus. According to previous studies [40, 41], these regions 
are reported as potential biomarkers for AD and MCI.

4.3  The advantages of the proposed method

To date, researchers have proposed many FN estimation 
methods, including PC, partial correlation, and some 
directed connection estimation methods such as dynamic 
causal modelling (DCM) [13], Granger causality [42], 
structural equation modelling (SEM) [43], and Bayes net 
methods [44]. In order to evaluate different connectivity 
estimation methods, Smith et al. conducted a systemati-
cal comparative experiment [45] and found that, “corre-
lation-based approaches can be quite successful, where 
partial correlation methods can give high sensitivity 

Fig. 5  Influence of embedding dimension d on the performance of  HoFNCOPE, including (a) ACC , (b) SEN, and (c) SPE, respectively. Note that 
we also provide the high-order brain network construction method  HoFNSR as a baseline that is independent of the embedding dimensions

Fig. 6  Classification accuracy corresponding to two high-order brain network construction methods, (a)  HoFNSR and (b)  HoFNCOPE, under dif-
ferent regularization parameter combinations. Note that the results of  HoFNCOPE are based on a fixed embedding dimensions d = 80
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to network connection detection on good quality fMRI 
data.” Additionally, they pointed out that “none of the 
directed methods is very accurate at estimating direction-
ality.” Therefore, in this paper, we do not consider the 
directionality, but use the partial correlation to calculate 
the connectivity between two brain regions by regress-
ing out the confounding effects from other brain regions.

4.4  Analysis of statistical significance

To evaluate the significance of FNs estimated by PC, 
SR,  HoFNSR, and  HoFNCOPE, respectively, we perform 
statistical significance tests based on surrogate analy-
sis. Specifically, we apply inverse Fourier transform of 
the original BOLD signals to obtain surrogate datasets, 
which have the same power spectrum as the original 
data [46], thus generating three surrogates in this paper. 
After obtaining the surrogate data, we estimate FNs for 
the identification task based on four different methods. 
The classification accuracy is used here as the statis-
tic of the test, and the measure of significance [46, 47] 
S = |Qorig− < Qsurr > |∕𝜎surr , where Qorig is the statistic 
for the original data, < Qsurr > is the mean value statistic 
for the surrogates, and �surr is the standard deviation of 
the statistic for the surrogates. We select the significant 
level � = 0.05 , and thus, when S ≥ 1.96 , it indicates that 
the constructed FN is significant. In Table 3, we report 
significance measures of FNs constructed by four differ-
ent methods. As can be seen from Table 3, the statisti-
cal measures are all greater than 1.96, which indicates 
that all the differently constructed FNs have statistical 
significance.

5  Conclusion

In this paper, we propose a new scheme to construct 
HoFN by embedding the LoFN via COPE to generate 
the new node representation for removing the potentially 
redundant/noisy information in original node features and 
simultaneously maintaining the low-order relationship in 
the low-dimensional embedding space. To evaluate the 
effectiveness of the proposed scheme, we conduct experi-
ments on the ADNI dataset to identify subjects with MCI 
from normal controls. The experimental results demon-
strate that the proposed method can achieve better perfor-
mance than the baseline method. Finally, it is worth point-
ing out that the proposed COPE is a shallow embedding 
method that is generally simple and has a better interpret-
ability. However, advanced studies have shown that many 
deep embedding methods based on graph neural networks 
can generate more informative node representation [48]. 

Fig. 7  Impact of different threshold values on the classification accu-
racy of PC. Note that the results of  HoFNCOPE are based on a fixed 
embedding dimensions d = 80

Fig. 8  The most discriminative features (network connections) 
selected using t-test. Note that each arc shows the selected feature 
between two ROIs, where the color is randomly allocated only for a 
better visualization, and the thickness of each arc indicates its dis-
criminative power that is inversely proportional to the corresponding 
p-value

Table 3  The significance measure corresponding to four different FN 
estimation methods

Method PC SR HoFNSR HoFNCOPE

S 3.1056 2.9003 2.7282 2.2645
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Therefore, we plan to extend COPE to a deep version and 
use it to estimate HoFN in the future.
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